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INTRODUCTION

Conservation laws have been under consideration for a long time. The classical method in
constructing conservation laws, based on Noether’s theorem, can only be applied, if a
Lagrangian function is available for the system of interest. By using the recently developed
neutral action (NA) method, this requirement can be dropped, since a given set of
governing partial differential equations is sufficient to construct conservation laws. But
even if a Lagrangian function is available, the NA method delivers the same results as
Noether’s method, if, in addition, the Bessel-Hagen extension would be applied.

1. DEFINITION OF CONSERVATION LAWS

A mechanical system is considered that can be described by a system of q differential
equations

Dbðxi; va; va;kÞ ¼ 0; b ¼ 1; 2; . . . ; q; ð1Þ
with

xi; i; k ¼ 1; 2; . . . ;m; na; na;k; a ¼ 1; 2; . . . ; m;

in which xi denote the independent variables and na, na,k denote the dependent variables.
The abbreviation na,k stands for dna/dxk. If any set of m associated functions

Pi; i ¼ 1; 2; . . . ;m ð2Þ
satisfies

Pi;i ¼ 0 ðlocal formulationÞ ð3Þ
along all solutions of equation (1), then equation (3) is denoted as a conservation law.
A conservation law may also be written in an integral form. Let B be a body with an

infinitesimal volume element dV, which is enclosed by a surface S with area element dA

and unit outward normal vektor ni (Figure 1). By using the divergence theorem, one can
write Z

B

Pi;i dV ¼
Z

S

Pini dA ¼ 0 ðglobal formulationÞ ð4Þ

leading to a conservation law in a global formulation.
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Figure 1. Body B with volume V, surrounding surface S with area A and unit outward normal vektor ni.
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2. CONSTRUCTING CONSERVATION LAWS

The classical way of constructing conservation laws has been established by the
mathematician Noether in 1918 [1] and was extended by Bessel-Hagen [2] in 1921. For
systems without a Lagrangian, no procedure existed for a systematic construction of
conservation laws, until the NA method was advanced [3]. This method can be used on the
subject of material or configurational mechanics [4] as well as on dynamics. All that is
required is that the system can be described by a set of differential equations

Dbðxi; na; na;kÞ ¼ 0: ð5Þ

And even if the governing equations can be calculated from a Lagrange function, the
application of the NA method is usefull, since it leads to the same conservation laws in a
much simpler way in comparison to the formalism above.
First, the concept of a ‘‘Null Lagrangian’’ will be introduced. If a Lagrange function can

be written as *LL ¼ dgi=dxi ¼ gi;i with gi ¼ giðxk; na; na;jÞ; it can be shown that
*LL ¼ gi;i , Eað *LLÞ ¼ 0; ð6Þ

i.e., it satisfies the Euler–Lagrange equation identically. *LL is then called a ‘‘Null
Lagrangian’’. Setting the variation of the action integral

A ¼
Z

B

*LL dV ð7Þ

of such a Null Lagrangian to zero, one obtains

dA ¼ 0 , Eað *LLÞ ¼ 0; ð8Þ

where dA denotes the variation of the dependent variables. This means that the action
integral A does not depend on the explicit functional dependence of gi(xk) inside the
domain of integration, but only on the values at the boundary S. So the idea is to seek for
characteristic functions fa such that

faDa ¼ Pi;i: ð9Þ

From equations (6) and (8), it follows

EbðfaDaÞ ¼ EbðPi;iÞ ¼ Ebð *LLÞ ¼ 0 , dA ¼ 0 ð10Þ

with

A ¼
Z

B

*LL dV ¼
Z

B

faDa dV : ð11Þ

The characteristics fa have to be determined from equation (10). The action integral
behaves neutrally under its variation, so the formalism is called the ‘‘NA method’’.
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3. SYSTEMS WITH GYROSCOPIC FORCES

From classical mechanics, it is well known that for elastostatic systems, the Betti–
Maxwell reciprocal theorem is valid [5]. With the help of the NA method, it is possible to
calculate an analogous theorem for rotordynamic systems with gyroscopic forces. Figure 2
shows a system with gyroscopic forces. Gyroscopic terms frequently occur if the
co-ordinate system is not fixed to an inertial system. The system in Figure 2 consists of a
turntable (moment of inertia I) rotating around the vertical axis. A masspoint m is located
in a radial groove and is connected to the center by a spring (initial length r0, spring
constant c). The table itself is connected to a drive via an elastic clutch (torsional spring
constant cT). The angular velocity O of the shaft is taken to be constant, the angle j
denotes the torsion between the upper and lower part of the elastic clutch. The system can
be described by a set of non-linear differential equations [6]

ðI þ mr2Þ .jjþ ðOþ ’jjÞ2mr’rr þ cTj ¼ 0; m.rr � rmðOþ ’jjÞ2 þ cðr � r0Þ ¼ 0: ð12Þ
They can be linearized around a stationary solution js, rs by

j ¼ js þ %jj; r ¼ rs þ %rr; ð13Þ
in which js=0 and rs=cr0/(c�mO2). Considering only small disturbances %jj; %rr the
linearization leads to a set of linear differential equations

ðI þ mr2s Þ .%jj%jjþ 2mrsO’%rr%rr þ cT %jj ¼ 0; m.%rr%rr � 2mrsO ’%jj%jjþ ðc � mO2Þ%rr ¼ 0: ð14Þ
To apply the NA method formulate

fjDj ¼ fj½ðI þ mr2s Þ .%jj%jjþ 2mrsO’%rr%rr þ cT %jj�; frDr ¼ fr½m.%rr%rr � 2mrsO ’%jj%jjþ ðc � mO2Þ%rr�: ð15Þ
Using the concept of the ‘‘Null Lagrangian’’ (10) one sets

EðfjDj þ frDrÞ ¼ 0; ð16Þ
which is satisfied by the special formulation

fj ¼ ’%jj%jj; fr ¼ ’%rr%rr: ð17Þ
One then obtains the divergence

Pt;t ¼ ’%jj%jjDj þ ’%rr%rrDr: ð18Þ
Figure 2. Mechanical system with gyroscopic forces: masspoint on a turntable.
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After integration the conserved current is

Pt ¼ 1
2
I ’%jj%jj

2 þ 1
2
cT %jj2 þ 1

2
m’%rr%rr

2 þ 1
2
c%rr2 � 1

2
mO2 %rr2: ð19Þ

Equation (19) is a well-known energy-related quantity. The total energy of the system is
not a conserved quantity [6]. Beside this classical conservation law, other conserved
currents can be calculated with the use of the NA method. The special formulation

fj ¼ %jj; fr ¼ %rr ð20Þ

can be used as a characteristic and leads to the divergence

Pt;t ¼ %jjDj þ %rrDr: ð21Þ

This means that any solution %rr; %jj obeying equation (14), but belonging, for instance, to a
different initial value problem, may serve as a characteristic for a conservation law. By
using the energy-related equation (19) and the identity

%jj .%jj%jj ¼ ð %jj ’%jj%jjÞ	 � ’%jj%jj
2 ð22Þ

one obtains after some calculation, the Betti–Maxwell reciprocal theorem

pð1Þ
j %jjð2Þ þ pð1Þ

r %rrð2Þ ¼ pð2Þ
j %jjð1Þ þ pð2Þ

r %rrð1Þ: ð23Þ

In equation (23), the abbreviation for the canonical momenta

pðiÞ
j ¼ ðI þ mr2s Þ ’%jj%jj

ðiÞ þ 2mrsO%rrðiÞ; pðiÞ
r ¼ m’%rr%rr

ðiÞ ð24Þ

have been used. This theorem leads to the conclusion that we have an infinity of conserved
currents parametrized by solutions %rr; %jj of equation (14).

4. CONCLUSIONS

The classical procedure of constructing conservation laws is to apply Noether’s
theorem. It requires the existence of a Lagrangian for the system under consideration.
Furthermore, this method demands the knowledge of infinitesimal transformations,
which have to be calculated in a separate step. Some further conservation laws can be
calculated using the Bessel-Hagen extension, since the equations of motion are left
unchanged when a so-called ‘‘gauge function’’ is added to the Lagrangian. In this
case, another seperate calculation has to be performed. The same conservation laws as
above can be obtained by using the NA method, having to calculate only one unknown
set of functions fa. It was shown that with the NA method even a Betti–Maxwell
reciprocal theorem can be derived for a system with gyroscopic forces. Moreover,
the NA method can also be applied in the absence of a Lagrangian (e.g., dissipative
systems), since only the governing differential equations are required for this procedure. It
seems that with a systematic treatment even more conservation laws can be obtained for
this problem. Studies along this line are in progress and will be dealt with in a forthcoming
paper.
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